仅只有未实名的,新媒易不收取任何费用,公益非盈利机构
24小时服务热线: 4000-162-302
请扫码咨询

新媒易动态

NEWS CENTER

数据驱动业务一直是难度很高的话题,通过数据模型或者可视化解读出的数据短板必须得到重视和解决

2021-04-27

数据驱动业务一直是难度很高的话题,通过数据模型或者可视化解读出的数据短板必须得到重视和解决,应用数据推进业务发展、解决业务短板也应当成为企业的日常工作之一。培养企业的数据思维,形成数据习惯也是一个长期过程。一个快速、高效、易用、可靠性高的数据平台,提供准确性高,及时响应,保证更新频次的数据供给将会对数据使用者和业务伙伴大有裨益。我行的数据产品矩阵逐步成型,为业务层提供全面、及时、准确、可靠的数据服务,其中自助式客户洞察分析的知秋平台提供客户全流程转化分析,交互式分析的轻舟平台满足各类定制化数据需求,数据资产地图可查询各类数据结构和指标标准,报表平台能实现一分钟拼表。


数字化转型过程中离不开各数据产品/平台、数据团队和业务团队的高度协作,这也体现了数据运营精细化程度,从数据使用颗粒度的细分到管理层至一线业务伙伴对数字化的深度认可都应有体现。除了自上而下的对业务数据和数字化的高度重视,专业的数据运营/支撑团队也是有必要的,这样一只数字化团队除了掌握必备的数据分析方法,对整个企业的数据产品矩阵和数据指标也要有深刻的理解,最为关键的是需要深耕业务,如何处理好后台数据和一线业务伙伴二者的互通是相当困难的。很简单的方法,新人数据工作者到业务前线岗位轮岗或者兼职一定周期,全身心参与到业务过程将会对其后期的业务分析能力大有提升,也会对业务过程数字化有更深刻的理解。

数字运营本质还是人为干预的过程,在于数据使用者如何分析和使用数据进行决策,好的数据产品某些情况也能解决问题,这里举个可能不是很恰当例子:我们通过数据统计发现某条道路堵车概率极高,分析原因是路两旁车辆乱停乱放严重,要治理道路两旁的乱停车现象,一是由交警给乱停放车辆贴罚单,后续乱停乱放现象就会减少,这属于人为干预的运营手段;二是给道路旁设置非机动车道围栏,导致路边没有停车位置,也可改善现象,这属于产品手段。但实际施展过程需要结合具体道路情况,这时就需要熟悉街道的协警来参与决策是人为贴条还是设置围栏。

即 运营(人为干预)+工具(数据产品)+业务经验(深耕行业)=数据驱动业务,而数据驱动业务的最终结果就是业务过程数字化的过程。

数据偶尔是不可靠的,如数据统计漏洞,数据口径不一造成的数据差异,大环境因素造成的数据波动等,数据本身是无法解读特殊情况的,并且数据本身是不具备业务背景的,这些都需要具备老练行业经验的人进行解释和处理。

数据解决不了的问题:感性问题(如人为的思想感情因素),产品创新问题(需要产品经理的创新想法和经验)等,因此更说明了人为用数的重要性。

相关推荐