新媒易动态
NEWS CENTER
NEWS CENTER
2021-04-10
人工智能领域,2020年迎来了NLP落地场景智能客服的崛起。不同场景和业务的应用要求智能对话更拟人、更懂客户。
本文以京东智能客服「开发票业务」从语音和图形两种产品形态,对智能对话的优化提出小小建议。
1)对话的引导项不同
语音交互的引导回复话术最多给出2-3个选择。图形交互的引导,在GUI页面内,可以显示多个引导项。
2)对话的上下文处理不同
语音交互的上下文存在对话树中,超过层级的对话内容会从对话树中删除,但用户人脑还存在上文感知,需要更专业和复杂的引导帮助用户进行下一步操作。
图形交互的上文存在对话列表内,用户很容易感知上文内容,哪怕上文失效,也可以回到之前的对话部分进行查看。
3)对话逻辑的处理不同
语音交互中,存在筛选、指代、相似内容搜索、跨场景对话等对话逻辑;一旦触发一个规则,需要增加更多引导回复方便用户完成对话任务。
图形交互的对话逻辑,可以用文本、tab、列表等方式辅助对话任务,便捷的点击操作,让用户更好的按引导完成对话。
4)对话的“拟人化”程度不同
用户要求语音交互比图形交互更“人性化”,希望对话的智能客服更像人;对话不仅包括ASR的声音拟人化,更要求对话的内容像日常说话一样自然,对话交互要秉持友好自然有个性的原则。
5)情绪识别模型的使用场景不同
语音交互中,情绪的感知相对比较强烈,用户一说话就能感知对方是情绪低落还是情绪高涨,情绪模型的对话应用于每一句用户回复的对话中。
图形交互中,只有用户输入的语言文字带有情绪内容,或使用情绪的表情符号,才能识别用户当前的情绪状态。
6)对话的兜底应答策略不同
语音交互中,经常会遇到智能客服回答不了的问题,这时候需要应对技能进入相对无解的状态,对话设计不能让用户的感觉“雪上加霜”,一般回复以「机灵可爱的承认没听懂+引导下一步话术」组合出现。
例如:“小东在自己强大的神经网路内走迷路啦,您如果还要继续开发票请对我说我要开发票”,图形交互的回复主要以展示下一步用户可能操作的TAB选项为主。
1)回复话术准确、简洁、有目标性
例如:用户说“我要开发票”,直接引导用户开发票,完成任务。