新媒易动态
NEWS CENTER
NEWS CENTER
2019-05-13
若要解决用户冷启动问题,我们只能利用其他方式获得用户的兴趣,暂时替代用户的行为。大家一定记得上一篇我在讲述获取用户画像的原始数据中提到过,我们可以获取用户的信息。那么对于这个问题我们就可以用以下的方法:
当以上方式获得的信息再进过算法推荐给用户后,用户只要产生了交互,那么暨产生了用户行为。
物品冷启动常见的场景是将新的物品推荐给可能对它感兴趣的用户这一问题,新上架的物品或信息如何能快速投递给感兴趣的用户,我们可以通过以下两个方法解决:
系统冷启动多见于新开发的网站上设计个性化推荐系统,此时物品/内容少,用户少。很多算法无法奏效。那么在这个时候,只能通过专家作用,即通过人工标记的方式制定类别和标签,人工分类,人工制定权重等方式进行。后续用户行为及物品产出后,即可更换替代。
上述讲了这么多都是如何通过用户画像找到用户感兴趣的内容/物品,那么终于来到精准推送这一步了。用户已经选定好了,用户喜欢的物品/内容也选好了。那么这个时候就可以使用推送系统把内容触达用户了。在这个过程中所需要注意的是以下几个问题:
完成以上这些步骤,也就可以基本上实现了个性化的精准推送了,但其实还有很多需要我们去尝试和研究的,例如用户活跃度对协同过滤算法计算的影响,以及用户活跃度对推送的影响。用户的兴趣随着时间的逐步衰减,推送的点击意愿随着用户沉默的时间越来越低;等等….这里就不展开详细说明了,如果大家有兴趣,我们可以再进行详细交流。