新媒易动态
NEWS CENTER
NEWS CENTER
2019-04-26
在我还是互联网产品经理时期,我关注的重点在C端用户的需求,而现在AI技术落地对接以B端为主,作为AI产品经理要调整关注焦点,从商务对接阶段开始,就要和B沟通。能带给B端怎么样的商业价值,创造多少收益,要依赖产品经理对B端需求的理解。
智能客服系统是融合B端、C端体验设计最为突出的平台。智能客服平台包含“管理系统”+“坐席平台”+“客户端”三个功能模块。在线客服初衷,是去思考B端商户对客服系统最迫切的需求是什么?
所谓刚需,一是降低客服成本,二是通过沉淀产品业务知识/常见问题,提高服务效率,提升客户满意度。那么就要求智能客服系统做到快速接入/快速投产上线,业务知识批量录入并通过算法实现知识库自我升级,运营数据可视化等指导运营人员有效管理日常工作。
要实现这些目标,AI产品经理就需要充分了解B端商户的整体业务,同时也要深入分析客服/客服团队管理人员的日常工作流程/工作中的难点痛点,如若不清楚,整个系统实现出来也只能是中看不中用。
另一个典型案例是“智能质检平台”,质检平台使用语音识别技术ASR、自然语言处理技NLP术对客服人员服务录音进行处理后,针对必要的项目进行质检。该系统为客服人员服务情况进行评估提供帮助,并且作为客户问题统计、风险预警及挖掘营销策略的渠道起到不可提到的作用。
在智能质检平台出现之前,客服团队需要大量的人力进行部分录音的抽检,效率低不说,还不能关注到全量数据背后带来的平台问题及困难出现的营销机遇。
这类智能平台在商务沟通前,AI产品经理就需要准备验证数据,落地案例,使用效果等,对B端C端的诉求有清晰的认识,打造客户觉得好用,愿意用,打造B端的用户口碑,为B商户赋能,实现共赢的局面。
以上四点从体验层面介绍了AI产品经理在设计上的思考和执行建议,下面,我将用第五点影响算法的数据限制和第六点上下游调用引擎的灵活便捷上,从整体架构设计角度做进一步分析。
这里的“兜底方案”,指除了算法/开发流程/项目进度本身等团队可控的因素外,非团队可控的部分。
比如:在人身核验的业务中,证件比对库是否可用是整个流程的关键,所以公安、人行渠道证照调用时间与产品容错率、服务中断率这些非团队可控因素,必须纳入人脸照片比对流程的设计。例如:工作时间使用人行提供的照片库,非人行工作时间需要使用付覆盖面更广、时效性更强的公安身份证照库进行补充。既要满足业务的比对需求,又要考虑比对结果的各项数据结果不低于业务阈值,避免照片库不可用带来的业务风险。
在做限制条件分析时,比较好判定的依据为,各环节是否有非团队可控的因素存在,尽可能规避掉这样的依赖,当确实无法避免时,就得考虑主备方案,甚至主备方案失灵时的兜底方案。