新媒易动态
NEWS CENTER
NEWS CENTER
2019-04-06
数据分析和数据挖掘的关系:从数据量级来看,一般情况下,数据分析的数据量可能并不大,而数据挖掘的数据量极大。从建模条件来看,数据分析是从一个假设出发,需要自行建立方程或模型来与假设吻合,而数据挖掘不需要假设,可以自动建立方程。从分析对象来看,数据分析往往是针对数字化的数据,而数据挖掘能够采用不同类型的数据。
从结果来看,数据分析对结果进行解释,呈现出有效信息,数据挖掘的结果不容易解释,对信息进行价值评估,着眼于预测未来,并提出决策性建议。数据挖掘与数据分析两者紧密相连,具有循环递归的关系
(1)数据库
数据库是指长期存储在计算机内有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。数据库理论的研究主要集中于关系的规范化理论、关系数据理论等。近年来,随着人工智能与数据库理论的结合及并行计算机的发展,数据库逻辑演绎和知识推理、并行算法等理论研究,以及演绎数据库系统、知识库系统和数据仓库的研制都已成为新的研究方向。
(2)数据仓库
数据仓库(Data Warehouse) 是一个面向主题的(SubjectOri2ented) 、集成的( Integrate ) 、相对稳定的(Non -Volatile ) 、反映历史变化( TimeVariant) 的数据集合用于支持管理决策。首先,数据仓库用于支持决策,面向分析型数据处理,其次,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行了重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。