仅只有未实名的,新媒易不收取任何费用,公益非盈利机构
24小时服务热线: 4000-162-302
请扫码咨询

新媒易动态

NEWS CENTER

现在自动化建模也是一大趋势

2019-05-18

写代码和复杂的数学公式领AI看起来门槛高不可攀,但是为了降低建模门槛,国内外大量公司都推出了自己的组件建模平台,可以通过简单拖拽无需编写代码,而负责的数学公式被封装成算子组件。国外的亚马逊AWS,微软的AZURE,R2.ai,国内的阿里PI,第四范式的先知平台都是类似产品。

现在深度学习建模过程也被封装成了组件化建模,国外的deepcognition,国内即将上线的阿里PI新版本也将支持深度学习组件化建模,联想的AI平台可以支持简单的图像分类识别。

如果你感觉组件化还是麻烦,那么笔者要告诉你,现在自动化建模也是一大趋势,国外的datarobot就是其中的典型产品,只需要上传一份打好标签的csv数据,选择标签,点击开始,系统自动从数千开源模型中选择100个模型进行自动化调参训练,选出最优模型,并提易懂专业的数据和模型分析报告,指导非专家用户使用。

所以不要因为惧怕写代码和数学而惧怕AI,其实他们没有必然联系,下文会介绍一些AI-机器学习的常用概念,进一步揭开AI的面纱。

3. AI相关的抽象概念太多,让人不明觉厉

2018年罗胖的跨年演讲中提到了人类的一项重要能力:抽象能力,世界太复杂,为了便于理解和沟通协作,我们会将很多事物进行抽象,但是,当我们不具备对抽象概念的还原能力时,我们常会产生恐惧,敬畏或排斥的情绪,对我们这些非数据科学专业的人来说。

初遇AI时就是如此,AI的底层是数学,而数学是对现实世界的高度抽象。当我们听到算法,模型,过拟合,召回率,auc,随机森林,朴素贝叶斯等高度抽象的词汇时,当我们看到几十行数学公式推导时,我们会本能的不明觉厉。

举个例子:我这样介绍我的项目:“我们利用无监督学习Kmeans模型完成用户标签聚类,使用XGBOOST模型,SVM模型预测用户购买期望,进而实现精准推荐”。

听完这句介绍你是什么感觉,如果一个完全没接触过机器学习的小白可能瞬间就懵逼了。原因很简单,简单一句话中包含了大量你无法理解的抽象概念,而事实可能并非如此。

同样的介绍我换一种说法:“我们通过一些规则给用户打上标签,使用一套计算规则预测用户希望购买哪些商品,然后给他们做相应推荐”,是不是瞬间感觉没那么高大上了。

下文尝试用简单类比对这些抽象概念进行说明,但前提是读者需要先摒弃掉那种对抽象概念的恐惧,我相信,看完本文后,当你听到这些抽象概念时可以淡然一笑,既不恐惧也不敬畏,并且理解其本质。

相关推荐